Goals

We’d like to learn Recurrent mutations in aspects of

mutation & methylation

BG

  • The recurrent nonsense mutations in P53 is at or adjacent to methylation sites.

Does this apply to other recurrent mutations?

Results1

Sequence analysis of p53 mutations

ggplot(data = maf.p53.snp3 ) +
  geom_histogram(aes(x = cdnatype,
                  fill = Variant_Classification),
                  stat = "count")
Ignoring unknown parameters: binwidth, bins, pad

di-nucleotide

ggplot(data=testfind)+geom_histogram(stat="count",aes(x=metpattern,fill=Variant_Classification))
Ignoring unknown parameters: binwidth, bins, pad

Recurrent mutation sites - methylation sites

require(ggplot2)
require(dplyr)
require(ggrepel)
source("../R/plot_pfamdomain.R")
source("../R/pfam_readpfam.R")
source("../R/maf_sumrecur.R")
mshotspots<-c("248","273","175","245","249","282","143","157","220","270","242","175")
recurcut=3
load("../data/tp53test2.rda")
maf.tmp <- maf_sumrecur(testfind)
maf.tmp <-
  maf.tmp %>%
  filter(Variant_Classification %in% c("Nonsense_Mutation"))
maf.tmp$cohort="ALL"
gg <- ggplot(data = maf.tmp %>% filter(recur_bypos > recurcut)) +
    #log
    #  geom_tile(aes(x = Prot_pos, y = cohort, fill = log2(recur_cohort))) +
    #cutoff
    geom_point(aes(
      x = Prot_pos,
      y = cohort,
      color = ifelse(recur_bypos > 10, 10, recur_bypos)
    ),
    size= 3,
    alpha=0.6
    ) +
    geom_segment( inherit.aes = FALSE,
      data=maf.tmp ,
      aes(
       x=Prot_pos,
       xend=Prot_pos,
       y=0,
       yend=Inf),
      colour="red",
      linetype=4,
      alpha=0.02
      )+
    scale_colour_gradient(high = "red", low = "grey") +
    labs(color="Recurrence",fill="Domain")+
#    facet_grid(Variant_Classification ~ .) +
    theme_classic()
    ## add domains
  if(TRUE){
    gg<-gg+plot_pfamdomain("P04637")
  }
  print(gg)

LS0tCnRpdGxlOiAnMjAxNzAzMjknCm91dHB1dDoKICBpb3NsaWRlc19wcmVzZW50YXRpb246IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIGJlYW1lcl9wcmVzZW50YXRpb246IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKICBzbGlkeV9wcmVzZW50YXRpb246IGRlZmF1bHQKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBGQUxTRSkKbG9hZCgiLi4vdG1wLlJEYXRhIikKYGBgCgojIyBHb2FscwpXZSdkIGxpa2UgdG8gbGVhcm4gUmVjdXJyZW50IG11dGF0aW9ucyBpbiBhc3BlY3RzIG9mIAoKLSBEaXN0cmlidXRpb24gb2YgdGhlIHJlY3VycmVudCBtdXRhdGlvbnMgIAogICAgLSAqKmNvbXBhcmlzb24gb2YgbWlzc2Vuc2UgYW5kIG5vbnNlbnNlIGRpc3RyaWJ1dGlvbioqCi0gcmVsYXRpb25zaGlwIHdpdGggIAogICAgLSBleHByZXNzaW9uIGxldmVsCiAgICAtIGNvaG9ydHMgKG9yIGNhbmNlciBzdWIgdHlwZXMpCiAgICAKLSBlZmZlY3RzICAKICAgIC0gfn5pbiBwcm90ZWluIHByb3RlaW4gbmV0d29ya35+CgojIG11dGF0aW9uICYgbWV0aHlsYXRpb24KCiMjIEJHCgotIGBUaGUgcmVjdXJyZW50IG5vbnNlbnNlIG11dGF0aW9ucyBpbiBQNTMgaXMgYXQgb3IgYWRqYWNlbnQgdG8gbWV0aHlsYXRpb24gc2l0ZXMuYAoKICFbXShodHRwczovL3VwbG9hZC53aWtpbWVkaWEub3JnL3dpa2lwZWRpYS9jb21tb25zL3RodW1iL2MvYzUvRE5BX21ldGh5bGF0aW9uLnBuZy8zMDJweC1ETkFfbWV0aHlsYXRpb24ucG5nKQoKIVtdKGh0dHBzOi8vdXBsb2FkLndpa2ltZWRpYS5vcmcvd2lraXBlZGlhL2NvbW1vbnMvdGh1bWIvYS9hYi9UaHltaW5lX3NrZWxldGFsLnN2Zy8xMjBweC1UaHltaW5lX3NrZWxldGFsLnN2Zy5wbmcpICAhW10oaHR0cHM6Ly91cGxvYWQud2lraW1lZGlhLm9yZy93aWtpcGVkaWEvY29tbW9ucy90aHVtYi9iL2I0L1VyYWNpbC5zdmcvMTIwcHgtVXJhY2lsLnN2Zy5wbmcpCgpEb2VzIHRoaXMgYXBwbHkgdG8gb3RoZXIgcmVjdXJyZW50IG11dGF0aW9ucz8KCiMgUmVzdWx0czEgCgojIyBTZXF1ZW5jZSBhbmFseXNpcyBvZiBwNTMgbXV0YXRpb25zCgpgYGB7cn0KbGlicmFyeShnZykKZ2dwbG90KGRhdGEgPSBtYWYucDUzLnNucDMgKSArCiAgZ2VvbV9oaXN0b2dyYW0oYWVzKHggPSBjZG5hdHlwZSwKICAgICAgICAgICAgICAgICAgZmlsbCA9IFZhcmlhbnRfQ2xhc3NpZmljYXRpb24pLAogICAgICAgICAgICAgICAgICBzdGF0ID0gImNvdW50IikKCmBgYAoKCgoKIyMgZGktbnVjbGVvdGlkZSAKCgoKYGBge3J9CmdncGxvdChkYXRhPXRlc3RmaW5kKStnZW9tX2hpc3RvZ3JhbShzdGF0PSJjb3VudCIsYWVzKHg9bWV0cGF0dGVybixmaWxsPVZhcmlhbnRfQ2xhc3NpZmljYXRpb24pKQoKYGBgCgojIyBSZWN1cnJlbnQgbXV0YXRpb24gc2l0ZXMgLSBtZXRoeWxhdGlvbiBzaXRlcwoKYGBge3IgZmlnLndpZHRoPTcsZmlnLmhlaWdodD0zLGZpZy5jYXA9IlJlcG9ydGVkIGhvdHNwb3RzKGRhc2hlZCBsaW5lcykgYW5kIGhvdHNwb3RzIGluIFRDR0EocG9pbnRzKSIsY2FjaGU9VFJVRX0KcmVxdWlyZShnZ3Bsb3QyKQpyZXF1aXJlKGRwbHlyKQpyZXF1aXJlKGdncmVwZWwpCgpzb3VyY2UoIi4uL1IvcGxvdF9wZmFtZG9tYWluLlIiKQpzb3VyY2UoIi4uL1IvcGZhbV9yZWFkcGZhbS5SIikKc291cmNlKCIuLi9SL21hZl9zdW1yZWN1ci5SIikKbXNob3RzcG90czwtYygiMjQ4IiwiMjczIiwiMTc1IiwiMjQ1IiwiMjQ5IiwiMjgyIiwiMTQzIiwiMTU3IiwiMjIwIiwiMjcwIiwiMjQyIiwiMTc1IikKCnJlY3VyY3V0PTMKbG9hZCgiLi4vZGF0YS90cDUzdGVzdDIucmRhIikKbWFmLnRtcCA8LSBtYWZfc3VtcmVjdXIodGVzdGZpbmQpCgoKbWFmLnRtcCA8LQogIG1hZi50bXAgJT4lCiAgZmlsdGVyKFZhcmlhbnRfQ2xhc3NpZmljYXRpb24gJWluJSBjKCJOb25zZW5zZV9NdXRhdGlvbiIpKQptYWYudG1wJGNvaG9ydD0iQUxMIgoKZ2cgPC0gZ2dwbG90KGRhdGEgPSBtYWYudG1wICU+JSBmaWx0ZXIocmVjdXJfYnlwb3MgPiByZWN1cmN1dCkpICsKICAgICNsb2cKICAgICMgIGdlb21fdGlsZShhZXMoeCA9IFByb3RfcG9zLCB5ID0gY29ob3J0LCBmaWxsID0gbG9nMihyZWN1cl9jb2hvcnQpKSkgKwoKICAgICNjdXRvZmYKICAgIGdlb21fcG9pbnQoYWVzKAogICAgICB4ID0gUHJvdF9wb3MsCiAgICAgIHkgPSBjb2hvcnQsCiAgICAgIGNvbG9yID0gaWZlbHNlKHJlY3VyX2J5cG9zID4gMTAsIDEwLCByZWN1cl9ieXBvcykKICAgICksCiAgICBzaXplPSAzLAogICAgYWxwaGE9MC42CiAgICApICsKICAgIGdlb21fc2VnbWVudCggaW5oZXJpdC5hZXMgPSBGQUxTRSwKICAgICAgZGF0YT1tYWYudG1wICwKICAgICAgYWVzKAogICAgICAgeD1Qcm90X3BvcywKICAgICAgIHhlbmQ9UHJvdF9wb3MsCiAgICAgICB5PTAsCiAgICAgICB5ZW5kPUluZiksCiAgICAgIGNvbG91cj0icmVkIiwKICAgICAgbGluZXR5cGU9NCwKICAgICAgYWxwaGE9MC4wMgogICAgICApKwoKICAgIHNjYWxlX2NvbG91cl9ncmFkaWVudChoaWdoID0gInJlZCIsIGxvdyA9ICJncmV5IikgKwogICAgbGFicyhjb2xvcj0iUmVjdXJyZW5jZSIsZmlsbD0iRG9tYWluIikrCgojICAgIGZhY2V0X2dyaWQoVmFyaWFudF9DbGFzc2lmaWNhdGlvbiB+IC4pICsKICAgIHRoZW1lX2NsYXNzaWMoKQoKICAgICMjIGFkZCBkb21haW5zCgogIGlmKFRSVUUpewogICAgZ2c8LWdnK3Bsb3RfcGZhbWRvbWFpbigiUDA0NjM3IikKICB9CiAgcHJpbnQoZ2cpCgoKYGBgCgoKCgoK